伺服压力机的生产应用
压力机与坯料的关系
压力机工作速度在宏观上表现为板料的拉延速度,在微观上表现为板料的应变速率。根据塑性成形理论,应变速率增大会引起材料硬化,但当变形速度进一步加大时,塑性变形过程中产生的热量又会使得硬化效应有所下降(图3)。根据板料的塑性随应变速率变化的一般趋势显示,当应变速率不是很大时(ab段),由应变速率增大引起的塑性下降大于温度效应引起的塑性增加,即板料的塑性随应变速率增大而减小;当应变速率较大时(cd段),由于温度效应显著,由温度效应引起的塑性增加与应变速率引起的塑性下降相当。即此时板料塑性下降并不显著;而当应变速率增加到一定程度时(de段),板料塑性急剧下降,板料接近开裂边缘。
从上述分析得出,随着压力机工作速度的增加,由于板料变形区域的变形抗拉力增大而导致塑性下降,使拉延件传力区的应力增大,将导致该处开裂的可能性增大;为此针对不同板材允许的很大拉延速度,拉延成形时必须校核拉延过程中的压力机速度,以保证压力机的工作速度在板料允许的很大拉延速度内。
机械压力机模锻成形工艺与锻模设计特点
根据机械压力机的工作特点,其模锻工艺和模具设计具有下列特点:
(1)行程速度慢,但一次行程中金属变形量大,且有利于坯料心部变形渗透,金属沿水平方向流动剧烈。向高度方向流动较缓慢,充填模膛较困难,通常需要采用预锻工步。
(2)由于机械压力机行程固定,不便于进行拔长、滚压等制坯工步。对于截面积变化较大(>10%~15%)的锻件,需配备其他设备(如辊锻机、平锻机、电镦机等)进行制坯。
(3)由于机械压力机具有顶出装置,某些长轴类锻件可以立起来进行模锻或挤压,可采用较小的模锻斜度以提高锻件精度。
(4)由于机械压力机行程一定且变形力由机架本身承受,为防止设备闷车,上、下模不能压靠,其间必需留有间隙,一般为飞边桥部高度。
电气传动与交流伺服驱动
以电动机为基础的电气传动技术诞生于十九世纪初,迄今已有近200年的历史,它已经成为包括锻压机床在内的各种机械装备的主要传动方式。
电气传动分直流和交流两大类。由于直流传动具有优越的调速性能,直到上世纪上半叶,可调传动均采用直流电动机,而占电气传动总量80%以上的一般传动则采用交流电动机,不能调速,绝大部分锻压机械都属于这一类。“直流调速,交流不调速”形成了一种普遍的格局。尽管直流调速有许多优越性,但由于采用机械换向,存在有换向器寿命低、换向火花、造价高等问题,电机容量和速度以及应用场合均收到一定限制,例如,其极限容量-速度积仅为106kW.RPM。
伺服压力机传动方式及典型产品
(1)伺服电机直接驱动 电机直接与执行机构连接,推动滑块工作,具有非常短的传动链,因而结构简单、传动、精度高,很有发展前景。目前这种压力机有两种形式。
1)直线伺服电机直接驱动压力机 直线电机可以直接将电能转变为直线运动,推动滑块工作,实现 “零传动”。它已经成功地应用于机床的进给、磁悬浮列车等。浙江大学在上世纪90年代就曾研制过5-50KN的此类压力机,与普通机械压力机相比,节能40%,体积减少60%,重量减少40%。日本AIDA 公司已推出L-SF-300S的系列产品,大规格10KN,行程100MM,高工作频率为200SPM。山田DOBBY公司开发的同类压力机,具有示教功能,大压力为24kN,滑块精度0.5μm.
以上就是关于西藏双点锻压机械厂家免费咨询 高密高锻机械制造茶花女的作者全部的内容,关注我们,带您了解更多相关内容。