数据治理怎么做
当真正理清了这些关于信息化现状认知,企业通常都会决定开展数据治理和数据安全治理工作。至于这两项工作怎么做,通常有两种思路:要么循序渐进地从数据资产化的角度做治理,要么以需求为导向,从数仓、中台等数据服务的角度做。这就好比一条河被污染了,老百姓要喝水,是从治理水质,还是在下游建个污水处理厂,每天喝多少就治理多少?中国足球要进世界杯,是从娃娃抓起搞青训,还是规划老外雇佣军?选择哪种思路,高层认知很关键,所以IT、数据、业务、安全、法务等各部门提供的信息一定要准确,但实际情况要糟的多(因为基层员工的认知不够和人员变动等不确定因素都会造成高层的信息缺失)。
数据治理管理规范
数据化建设过程中的管理规范,更多体现在数据融合和交换的管理方法中,该类方法是以应用软件为载体的数据管理类规范,通常在不同应用行业、不同使用者中采用不同的管理规范,其相互之间既有共通之处,也有各企业的特点。
数据标准和数据规范的制定将是数字化社会的主要工程,也是国家建设别数据统一共享开放平台的基石。
数据治理数据管理流程
数据管理流程、数据申请流程、数据创建流程、数据生产流程、数据修改流程、数据销毁流程、数据共享交换流程等,基本贯穿整个数据生命周期。企业究竟有没有统一的数据使用流程,数据使用流程是什么样的,是数据认知的重要组成部分,作为数据安全的工作者,必须清楚地了解内部数据使用的全流程,方能制定出合理合规的管理方案。
数据治理
敏感数据一旦泄露会给个人及社会带来严重危害,甚至对企业及组织带来不可估量的损失,那敏感数据到底有哪些呢?除法律、法规内界定的敏感数据(号、姓名、住址、银行帐号等)外,还有企业或组织机构不适合公开的数据,如企业的营业数据、网络结构等。但如何鉴别和分类敏感数据却存在诸多矛盾,由于不同地域、不同法律或部门也可能对同一类的数据归类不尽相同,这也给识别敏感数据带来一定的难度。