随时技术的发展,也出现了采用固定式或动态阈值分割方式进行检测的算法,但此方法同样存在缺陷:
1、镜头镜片区域结构纹理复杂,单一的阈值方法不能区分缺陷和产品本身结构;
2、镜头的端面、凸台区域,存在大量的纹理干扰,现有的阈值方法难以进行有效分割缺陷;
3、现有方法采用定焦采图的方式,获得的缺陷尺寸不准确,导致漏检率难以控制。
s11、在所述镜头的端面或凸台上制作模板图像获得端面图片和凸台图片,并进行匹配定位;
s12、对所述凸台图片进行仿射变换后与端面图片对齐;
s13、根据自定义的核提取所述端面图片的高频分量;
s14、利用加权平均值算法叠加所述端面图片和所述凸台图片获得融合图片;
s15、依照所述融合图片进行缺陷检测。
我们是一群由杭州电子科技大学赵巨峰带领的台湾研发及业务团队并且,每经过一个步骤,需要判定产品是否为合格产品,再进行下一步检测。例如,可以先对镜头的端面、凸台进行缺陷检测,若检索结果判定产品为合格产品,则进行产品下料,重选换下一个产品进行检测。若检测产品为合格产品,则进行下一步骤例如s3进行检测。
本发明的镜头缺陷检测方法,能够对镜头进行的检测,包括对镜头端面和凸台的缺陷检测、对镜片区域内尘、内脏、脱模、毛丝等缺陷检测、对镜片、胶水、镜筒伤的检测和对镜头上表面和下表面的检测。并且检测方法具有高精度、的优点。
接着利用自定义的核7*7,进行图像卷积运算提取端面图片高频分量:
再利用加权平均值算法,按照imagemerge1=k1*image1+k2*image2+b对凸台图片和端面图片进行融合,按照imagemerge2=a*imagemerge1+b获得终的融合图片,根据融合照片进行缺陷检测。其中imagemerge1表示初步融合图片,imagemerge2表示融合图片,a表示拉伸系数,b表示拉伸偏移;image1表示凸台图片,image2表示端面图片,k1表示凸台权重系数,k2表示端面权重系数。