可再生能源(光伏和风电)的大规模渗透,使得电网从只应对需求侧的变化负荷,到既要应对需求侧负荷的变化,又要应对供应侧可变可再生能源的变化。储能具有了为供需两端提供缓冲和平衡的功能。供应侧多种不可调度、不可预测的可再生能源的接入,需要储能来保证能源供应的平衡和稳定。需求侧有大量用户屋顶光伏接入,有些是接在电表后端。为了尽量消纳这些可再生能源,提高可再生能源利用率,避免对电网的干扰,就需要分布式储能来提供灵活性。其中,电力驱动热泵+蓄热(冷)是重要的技术手段。
在电力充裕时段,它通过电动空压机将空气分段压缩到高压(10 MPa),然后注入不透水的地下岩洞中;在电力紧缺时段,将空气经加热或换热(利用余热)后送入涡轮发电机燃烧室与燃料混合,在高温下膨胀推动涡轮机发电。据测算,大约0.7~0.8 kW·h非高峰电力压缩空气,能够在高峰时段发电1 kW·h。因为发电还需要消耗燃料,所以CAES的一些实际案例的总体效率大约为42%~54%。
储存材料通常是砾石和水的混合物或沙子和水的混合物。如果坑的衬里用聚合物材料,则存储温度可达95 ℃。热量通过分布在不同层的管道进水或取水进行交换。存储中的传热过程主要是对流。由于砾石的比热容低,典型体积热容量为2.2 MJ/(m3·K),大约是水的60%,因此蓄热体积要比基于水的深坑储能大50%。这种储能方式相当于建造一个人工含水层,但蓄热温度比含水层高,对地质和环境影响相对较小。WGPS的蓄热能力也不差,可达30~50 kW·h/m3。
在供暖季开始时,蓄热罐(用热分层水箱)出口1提供70 ℃水,经换热器可以有2种选择:① 换热成60 ℃水,经3向建筑直接供暖(假定建筑用传统散热器供暖),经4回到冷管(此时冷管相当于供热回水管),再进入换热器换热;② 如果网内有供冷用户(例如数据中心),冷管温度如果保持在供暖的回水温度上就过高了,致使供冷用户无法用冷管中的供暖回水作热汇。