物体识别的步骤
图像特征提取就是提取出一幅图像中不同于其他图像的根本属性,以区别不同的图像。如灰度、亮度、纹理和形状等等特征都是与图像的视觉外观相对应的;而还有一些则缺少自然的对应性,如颜色直方图、灰度直方图和空间频谱图等。基于图像特征进行物体识别实际上是根据提取到图像的特征来判断图像中物体属于什么类别。形状、纹理和颜色等特征是较常用的视觉特征,也是现阶段基于图像的物体识别技术中采用的主要特征。
物体识别的主要方法
基于统计的方法与基于物体部件的方法:
根据识别方法是否对局部特征之间的关系建模,可以把识别方法分为基于统计的方法与基于物体部件的方法。
1、基于统计的物体分类方法(BoW:Bag of Words)
BoW模型严格上讲并不是一种物体识别方法,而是一种物体分类方法。这种模型的灵感来自于NLP中的BoW模型。。一幅图像可以看作是一篇“文档”,而图像中提取出的特征认为是“词语”。
1)生成性方法的学习与识别
生成性的学习方法通过先验知识去拟合并解释图像中的信号。在中,有两种主要的生成性方法,一种是NB(朴素贝叶斯),另外一种是pLSA(概率潜语义分析)与LDA(线性判别分析)。
物体识别的困难与前景
虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
获取数据问题:
在不同的视角对同一物体也会得到不同的图像,物体所处的场景的背景以及物体会被遮挡,背景杂物一直是影响物体识别性能的重要因素,场景中的诸多因素,如光源、表面颜色、摄像机等也会影响到图像的像素灰度,要确定各种因素对像素灰度的作用大小是很困难的,这些使得图像本身在很多时候并不能提供足够的信息来恢复景物。
物体识别的困难与前景
虽然物体识别已经被广泛研究了很多年,研究出大量的技术和算法,物体识别方法的健壮性、正确性、效率以及范围得到了很大的提升,但是现在依然存在一些困难以及识别障碍。这些困难主要有:
前景展望:
虽然存在着很多困难,但是随着人类对自己视觉的逐步了解,一个通用的物体识别技术终会被研究成功。人们一直致力于开发各种智能工具辅助人们的生产生活,比如机器人的研制,但是要想使得机器人可以像人一样运动,辅助人们的工作生活,那么前提是机器人必须具备类似于人的视觉系统,能够识别物体以及场景,真正的智能工具应该要具备“视觉”。物体识别技术的成功将会极大改变提高智能工具的能力,成为计算机技术里程碑式的一项研究。